GHz ADCs: From Exotic to Mainstream

Ken Poulton
Agilent Technologies
Santa Clara, California
Outline
A Quasi-Chronological View of GHz ADC Architectures

Flash
Folded and Interpolated
Time Interleaving
CMOS
Massive Interleaving
Flash, Folding, SAR
In the beginning, there was the Flash.

And it was not so good.

+ Fastest ADC architecture: all parallel
+ Lowest latency
 -- power and transistor count of 2^N comparators limited this to ~4 bits for fast ADCs
 o 3 W was a high-power chip
 o 1000 BJTs was near process yield limit

So the first GHz ADCs were Folding (or Folded Flash)
Architecture: Folding ADC

Reduce the number of clocked comparators:

- Put an analog folding circuit in front of each comparator
- Each comparator is used at multiple zero crossings
- Add MSB comparators (e.g., 2) to determine which zero crossing

van de Plassche & Grift, “A 7b A/D converter”, ISSCC 1979, **50 MSa/s**
1984: 0.4-GSa/s 6-bit ADC
Corcoran, Knudsen, Hiller, Clark “a 400 MHz 6b ADC”, ISSCC 1984

• 400-MSa/s 6-bit ADC
• 850 transistors in a 5-GHz f_t bipolar process (2.5 um)
• 5.8 effective bits at 100 MHz F_{in}, 2.7 W
• 4-way folding to reduce the comparator count from 63 to 17
• Used in the HP 54102A oscilloscope – the first realtime digital scope
Architecture: Time-Interleaved ADCs

ADC/Quantizer speed is limited by comparators and amplifiers.

Interleave multiple low speed ADCs (called slices) to increase effective sampling rate.

ADC slices need to be very well matched in **offset, gain, sample time and bandwidth**.
Interleaving Errors

Errors due to mismatched paths cause:

• Distortion and jitter in the reconstructed waveform
• Spurs in the spectrum
Time Interleaving – the first chip

- 4-way time interleaving
- Parallel samplers
- Slice matching by design
- 7-bit SAR ADC slices
- 4 MSa/s total (10-um CMOS)
1987: The First Gigasample/second ADC

- **Approach**
 - Start with the fastest unit ADC possible
 - the previous bipolar ADC at 250 MSa/s
 - Interleave a few ADCs (4) to get 1 GSa/s
 - T/H circuits in a faster process
 - 13 GHz GaAs

- **Mismatch control**
 - Offset and gain alignment by on-PCB pots
 - Single front-end sampler for timing alignment
1987: The First Gigasample/second ADC

- 1 GSa/s, 1.7 GHz analog BW
- 10-chip system (with memories)
- 16 W
- 5.2 effective bits to 1 GHz F_{IN}
Architecture: Folding with Interpolation

- Observation: folding circuits dominate input loading (2^N total diff pairs for N-bit ADC)
- Adjacent folding circuits outputs differ by a shift in the Vin axis
- So reduce the number of folding circuits by interpolating between adjacent folders’ outputs with resistive dividers
Characteristics of Gigasample ADCs in the 90s

- Mostly for Scopes
- Bipolar or HBT IC technology
 - Speed
 - Threshold Accuracy
- Designed for low transistor count
 - Yield
 - High power per transistor
- Highest possible slice sample rate
 - Time-interleaving of 2-4 unit ADCs
- Front-end T/H
 - Diode Bridge
 - Switched Emitter Follower
 - Sample + Filter
- High Power
- Custom Packaging

E.g.: 1997 4 GSa/s Module

- 4 GSa/s, 7-bit bipolar ADC
- Folding + Interpolating
- 2-way interleaving on chip, 4-way on board
- Custom CMOS Memory
- Thick-film package
- 13 W, expensive
Some Scope ADCs in the 90s

HP in 1991
Rush & Byrne, “A 4GHz 8b Data Acquisition System”, ISSCC 1991
- 500 MSa/s per slice, 1 GSa/s per chip, 13-GHz silicon BJT, folding ADC
- 4, 8-way interleaved to up 4 GSa/s

HP in 1994
- 4 GSa/s, 6 bits, 50-GHz GaAs HBT, folding ADC
- Did not go into a product

HP in 1997
- 2 GSa/s per slice, 4 GSa/s per chip, 7 bits, 25-GHz silicon BJT, folding and interpolating
- 2, 4-way interleaved to 8 GSa/s

Other scope manufacturers
- developed bipolar ADCs, but did not publish
- followed the fast-slice, low-interleaving paradigm
Trends in the 90’s

• Consolidation of IC fabs
 ▪ In 1990, lots of captive IC fabs - HP had about 10 fabs
 ▪ In the late 1990’s, fab construction costs (~$1B) squeezed out many players
 ▪ Commercial foundries with leading-edge CMOS gained much of this business

• Bipolar
 ▪ Increasingly a niche technology, focused on performance
 ▪ Investment driven by specific market trends
 • ~1990: CPUs, ~2000: RF, ~2010: 25+ Gb/s comms
 • Investment fades as CMOS gets fast enough for a given application
 • => Less predictable progress in bipolar

• CMOS – Moore’s Law
 ▪ Wafer costs much lower
 ▪ With higher integration, system costs even lower
 ▪ Predictable progress in performance
Could We Use CMOS for Scope ADCs?

“Don’t be stupid”

- CMOS ADCs (ca 1996) are 25-50 times slower than bipolar
- CMOS transistors are 10 times less accurate than bipolars

“But...”

- CMOS chips are cheap and transistors are virtually free
- Could integrate with DSP, memory, etc
- Might be lower power

"If we don’t do it in CMOS, someone else will.”

-- Dave Robertson, ADI
Architecture: Massive Interleaving of Low-Power ADCs

• Focus on the strengths of CMOS: low power and high integration
• Start with the most power-efficient CMOS ADC slice
• Time-interleave like crazy to get the required sample rate
• Fix up analog accuracy through calibration

Challenges:

Track/Hold: Bandwidth, Channel mismatch, Clocks

ADC: Sample Rate, Power/sample, Circuit area
2002: CMOS ADC Chip Architecture (4 GSa/s)

- 32 time-interleaved pipeline ADCs at 125 MSa/s
- Net sample rate is 4 GSa/s
What Is Calibrated?

Offline Calibration with DC and Pulse sources
Advantages of a Calibration Approach

• Device mismatch tolerance increased
 ▪ In this case, from ~0.25% to ~10% mismatch
 ▪ Can design for SNR rather than mismatch
 ▪ Circuit goes from large devices to quite small, power goes down
• Second-order effects can be covered by the same calibrations
 ▪ Smaller device mismatch effects (e.g., layout-related delta W)
 ▪ Delay and gain mismatches due to layout asymmetries
• Adjust DACs need not be tightly matched, merely have enough resolution
Timing Error and ADC Resolution

Fast input signal converts a sample timing error (dT) to an apparent voltage error (dV).

Rule of thumb:
1 ps @ 1 GHz --> 7 effective bits
Timing Generator

500 MHz Clock

Ring Cntrs

Delay Adjusters

32 Sampling Clocks (125 MHz)

PD

DLL

4 GSa/s: ~ 1 ps thermal jitter

Timing misalignments: before cal: 10 ps rms, after cal: 0.8 ps rms
Pipeline ADC Block Diagram

Corrected Output (8 bits, binary)

Radix Conversion Circuit

Raw ADC output: 12 bits, Radix 1.6

De-skew latches

1-bit quantizer

1-bit quantizer

1-bit quantizer

Input

Clock

1

2

12

T/H

FF

DAC

G

Residue

G=1.6
Current-Mode T/H and Amplifier

+ Fast: open loop amplifier
+ Good Linearity: Current mirrors with cascodes are 8 bit linear.
-- Poor Accuracy: Gain and offset errors
2002: 4-GSa/s 8-bit ADC

Compared to bipolar predecessor:

- same sample rate
- 100x more transistors
- + smaller area
- + 1 bit more resolution
- + better linearity
- -- 1.4x lower analog BW
- + 1/3 the power
- + 1/5 the cost

0.35-um CMOS
7.1 mm x 4.0 mm
300,000 FETs
4.6 W
Architecture: Coping With Wide Inputs

- Many parallel samplers connected to Vin cause:
 - High capacitance, e.g., 2 pF
 - Physical distribution challenges
 - Binary tree has matched lengths, but much more C
- Approaches:
 - Lower the input impedance
 - e.g., 25 ohms Rin
 - Add a buffer amplifier
 - Reduce the sampler count
 - One sampler feeds multiple ADC slices
 - Each sampler feeds multiple second-rank samplers
Architecture: Drinking From The Digital Firehose

• Current gigasample ADCs spew out 4 to 500 Gb/s
• Parallel outputs – only 1-2 Gb/s/pair
• Serial outputs – 2-10 Gb/s/pair is now common.
 ▪ FPGAs can catch this, but higher rates and pair counts can cost $1000 or more.
 ▪ Dedicated data capture chips can catch 500 Gb/s, but it takes 50-100 lanes.
• On-chip storage – limited size; slow readout leads to ~90% deadtime
• On-chip processing – e.g., for communications receivers, can reduce the data rate by 2-10x for particular applications
2003: 20-GSa/s 8-bit ADC in 0.18 um CMOS

- 2x faster process, 5x higher sample rate, 6x higher BW
- 80 ADC slices, larger Cin --> SiGe input buffer chip
- 160 Gb/s data rate --> 1 MB on-chip sample memory
20 GSa/s ADC Module

Buffer:
- 40 GHz SiGe
- 1 x 2 mm
- 1000 transistors
- 1 W

ADC:
- 0.18-um CMOS
- 14 x 14 mm
- 50M transistors
- 9 W

Package:
- 438-ball BGA
- 35 x 35 mm
Performance of Bipolar and CMOS ADCs

SNDR in Effective Bits

Accuracy (EffBits) vs. Frequency (Hz)

- 4-GSa/s CMOS (2002)
- 4-GSa/s Bipolar (1997)
Architecture: Folding ADCs in CMOS

- Brought the folding and interpolating architecture into CMOS
- 25x slower than HP’s 1997 bipolar folding ADC, 75x lower power

2008: CMOS folding ADCs reach the GSa/s range

- Lien & Lee, “A 6-b **1-GS/s** 30-mW ADC in 90-nm CMOS technology” A-SSCC **2008**
Architecture: Cascaded Folding

- Cascaded folding stages 6 times to a total folding ratio of 729
- “MSB” comparators exist at each folding stage to avoid previous folding limits due to mismatch
Architecture: Flash ADCs in CMOS

• Hero Projects
 ▪ Walden, et al, “A 4-bit 1 GHz sub-half micrometer CMOS/SOS flash analog-to-digital converter using focused ion beam implants”, CICC 1988
 • 5-V, 0.30-um CMOS using FIB lithography
 ▪ Yang, et al, “A serial-link transceiver based on 8-GSamples/s A/D and D/A converters in 0.25-um CMOS”, ISSCC 2001
 • 4-bit, 1 GSa/s flash slices with bond-wire LC delay lines

• More Practical ADCs
 ▪ Uyttenhove, Marques, Steyaert, “A 6-bit 1 GHz acquisition speed CMOS flash ADC with digital error correction”, CICC 2000
 ▪ Choi & Abidi, “A 6 b 1.3 GSample/s A/D converter in 0.35 um CMOS”, ISSCC 2001
 ▪ Liang, et al, “10 GSamples/s, 4-bit, 1.2V, design-for-testability ADC and DAC in 0.13µm CMOS technology”, ASSCC 2007
 ▪ Park, et al “A 6-bit 2GSPS interpolated flash type CMOS A/D converter with a buffered DC reference and one-zero detecting encoder”, NEWCAS 2005
Architecture: Interleaved Successive Approximation (SAR)

Chen & Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-m CMOS”, JSSC 2006
- 2-way interleave of SAR slices with asynchronous cycle timing

Louwsma, et al, “A 1.35 GS/s, 10 b, 175 mW Time-Interleaved AD Converter in 0.13 um CMOS”, JSSC 2008
- 16-way interleaving of SAR slices
2008: Communications-focused ADCs

- 160-way interleaving of 150 MSa/s SAR slice
- only 16 first-rank T/H’s at the input
- 4 effective bits at 12 GHz input
- Only 1.2 W

- Dedic, “56Gs/s ADC Enabling 100GbE”, OFC 2010
 - 56 GSa/s, 8 bits, aimed at 28 Gb/s line rate
 - 320-way interleave of 175 MSa/s SAR slice
 - “Charge Mode Interleaved Sampler” is named, but not described
 - 5.5 effective bits at 15 GHz input is quite good
 - 2 W in 65 nm
Architectures for Extending Bandwidths

Sample rate is extensible by more interleaving, but bandwidth is not so simple.

Analog peaking
+ extend the BW of an input sampler
-- hard to align over process, temperature
-- can only work where the analog loss is small
-- amplifies preamp noise in the boost region

Digital peaking
• implemented after the ADC
• same plusses and minuses, plus
+ avoids analog circuit development
-- amplifies quantization noise in the boost region
More Architectures for Extending Bandwidths

Frequency Interleaving

- Filter the input signal into lower and upper bands (e.g., 0-10 and 10-20 GHz)
- Mix upper band (e.g., 10-20 GHz) down to baseband
- Digitize each band at baseband, e.g., at 25 GSa/s
- After the ADC, use DSP to mix upper back up and combine with the lower band
- Apply lots of flatness and phase corrections
 + Mixers are cheaper than doubling ADC BW
 -- Hard to align band edges over process, temperature
 -- Noisy
2010: 80 GSa/s, 32 GHz BW

- Sampler in 250 GHz InP HBT process
 - 32 GHz native analog BW
- Drives four CMOS ADC chips
 - 80 GSa/s
- 5-chip module
 - avoids 32 GHz interconnects on PCB
- Noise ~2x lower than other methods

For details see the upcoming paper at CSICS in October:

Trends

Processes

• CMOS has mostly taken over ADC chips, even at the highest sample rates
• Bipolar circuits have a place in some high-BW front ends
• VDD scaling has stalled near 1 V in recent generations of digital CMOS
 ▪ 1-V analog design is becoming more mainstream
 ▪ Analog can now utilize the huge raw speeds of recent CMOS

Architectures

• Gigasample ADCs rely on both innovation and recycling of old ideas
• Massive time interleaving is key to the highest sample rates
• Most known ADC architectures now find some use in gigasample ADCs

Markets

• Optical communications is now driving the highest speed ADCs
• Multilevel signaling at 5-10 Gbaud/s may become another ADC driver
Thanks to:
Robert Neff
John Corcoran
Tom Hornak
Mehrdad Heshami
Brian Setterberg
Andy Burstein
Bernd Wuppermann
Charles Tan
Tom Kopley
Jorge Pernillo
Bob Jewett
Jake Wegman
Ken Nishimura

Knud Knudsen
Paul Clark
Roman Kagarlitsky
Michael Rytting
James Kang
Jon Tani
Art Muto
Ken Rush
Allen Montijo
Dave Dascher
Lewis Dove
Rudy van de Plassche
Boris Murmann

And any others I forgot to mention…
(end)